AnalyseMorphologique/utils/files/input.py
Djalim Simaila fb2bb6e9ce 🐛 fix(data_test.py): change variable name from teta_diffs to theta_diffs to improve semantics
 feat(data_processing.py): add function to calculate morphological indicators from discrete data
The variable name teta_diffs was changed to theta_diffs to improve semantics. A new function was added to calculate morphological indicators from discrete data. The function calculates Tortuosity, Volume, Surface, Mean radius, Standard deviation of radius, Sigma r tot, MI_l, and MI_p.

🔥 refactor(input.py): remove unused result_file_path parameter from ScannedObject constructor and from_xyz_file method
 feat(input.py): add encoding parameter to open method in from_obj_file and from_xyz_file methods
The result_file_path parameter was not being used in the ScannedObject constructor and from_xyz_file method, so it was removed to simplify the code. The encoding parameter was added to the open method in the from_obj_file and from_xyz_file methods to ensure that the files are opened with the correct encoding.

🐛 fix(output.py): add utf-8 encoding when writing to output file
 feat(output.py): remove unused import and function argument, improve code readability
The fix adds the utf-8 encoding when writing to the output file to avoid encoding issues. The feat removes the unused import and function argument to improve code readability. The function format_data now only takes the necessary arguments and the unused import is removed.

🐛 fix(main_window.py): fix typo in function name
 feat(main_window.py): add persistence to pre-processed data
The fix corrects a typo in the function name get_true_theta_from_x_y. The feat adds persistence to the pre-processed data by storing the raw data, discrete data, and advanced data in the main window. This avoids re-computation of the data when switching between tabs.

🎨 style(MainWindow.ui): add export_advanced_metrics button to the UI
🎨 style(UI_MainWindow.py): add export_advanced_metrics button to the UI
🎨 style(ressources_rc.py): update the resource file
🐛 fix(data_extraction.py): fix typo in function name get_mean_teta to get_mean_theta
The changes add a new button to the UI named "export_advanced_metrics" which allows the user to export variables. The resource file is updated to reflect the changes. The typo in the function name get_mean_teta is fixed to get_mean_theta.
2023-05-09 10:56:43 +02:00

373 lines
13 KiB
Python

"""
Created on Thu Apr 20 2023
@name: input.py
@desc: This module contains the functions to parse the input files, and create a ScannedObject.
@auth: Djalim Simaila
@e-mail: djalim.simaila@inrae.fr
"""
import numpy as np
from utils.files.output import save_output_file
from utils.settings.SettingManager import SettingManager
class FacesNotGiven(Exception):
"""
Exception raised when no faces was given.
"""
class ResultFileNotGiven(Exception):
"""
Exception raised when no faces was given.
"""
class ScannedObject:
"""
This class is used to manage the data of the 3D object.
:param vertices: List of verticesm Ndarray of shape (n,2)
:param faces: List of faces, Ndarray of shape (n,2)
:ivar vertices: List of vertices, Ndarray of shape (n,2)
:ivar faces: List of faces, Ndarray of shape (n,2)
:ivar x: List of x values of the vertices
:ivar y: List of y values of the vertices
:ivar z: List of z values of the vertices
:static method from_xyz_file(): Creates a ScannedObject from a .xyz file
:static method from_obj_file(): Creates a ScannedObject from a .obj file
:method get_x(): Returns the x values of the vertices
:method get_y(): Returns the y values of the vertices
:method get_z(): Returns the z values of the vertices
:method get_vertices(): Returns the vertices
:method get_faces(): Returns the faces
:method get_discrete_vertices(): Returns the discrete vertices
:method get_data(): Returns the data
:method export: Exports the data to a file
:raises FacesNotGiven: If no faces was given
:raises ResultFileNotGiven: If no result file was given
"""
def __init__(self, vertices, faces=None):
self.vertices = np.asarray(vertices)
self.faces = np.asarray(faces)
self.old_delta = None
self.old_discrete = None
self.old_discrete_type = None
self.x = np.asarray([vertex[0] for vertex in vertices])
self.y = np.asarray([vertex[1] for vertex in vertices])
self.z = np.asarray([vertex[2] for vertex in vertices])
@staticmethod
def from_obj_file(file_path:str, ratio:float = 1,normalised:str = '')->'ScannedObject':
"""
Create an Object from an OBJ file.
:param file_path: Path to the OBJ file
:param ratio: Ratio to apply to the vertices
:param normalised: the axis to normalise
:return: A ScannedObject
"""
with open(file_path, 'r', encoding='utf-8') as f:
x, y, z = [], [], []
triangles = []
data = f.readlines()
for line in data :
if line.startswith('f'):
# Ignore the normals and textures
if "//" in line:
triangles.append([int(line.split()[1].split("//")[0])-1, int(line.split()[2].split("//")[0])-1, int(line.split()[3].split("//")[0])-1])
elif "/" in line:
triangles.append([int(line.split()[1].split("/")[0])-1, int(line.split()[2].split("/")[0])-1, int(line.split()[3].split("/")[0])-1])
else:
triangles.append([int(line.split()[1])-1, int(line.split()[2])-1, int(line.split()[3])-1])
# if it is a vertex, the line starts with a 'v ',
# taking only 'v' would cause to take the textures coordinates('vt'),
# vertex normals ('vn') and space vertices ('vp')
elif line.startswith('v '):
x.append(float(line.split()[1]) * ratio)
y.append(float(line.split()[2]) * ratio)
z.append(float(line.split()[3]) * ratio)
if 'x' in normalised:
xmin = min(x)
for count,_ in enumerate(x):
x[count] -= xmin
if 'y' in normalised:
ymin = min(y)
for count,_ in enumerate(y):
y[count] -= ymin
if 'z' in normalised:
zmin = min(z)
for count,_ in enumerate(z):
z[count] -= zmin
return ScannedObject(list(zip(x,y,z)), triangles, )
@staticmethod
def from_xyz_file(file_path:str, delimiter:str = ' ', normalised:str = '')->'ScannedObject':
"""
Create an Object from an XYZ file.
:param file_path: Path to the XYZ file
:param delimiter: The delimiter used in the xyz file.
:param normalised: the axis to normalise
:return: A ScannedObject
"""
x , y , z = [], [], []
with open(file_path, 'r',encoding='utf-8') as f:
data = f.readlines()
for line in data:
x.append(float(line.split(delimiter)[0]))
y.append(float(line.split(delimiter)[1]))
z.append(float(line.split(delimiter)[2]))
if 'x' in normalised:
xmin = min(x)
for count,_ in enumerate(x):
x[count] -= xmin
if 'y' in normalised:
ymin = min(y)
for count,_ in enumerate(y):
y[count] -= ymin
if 'z' in normalised:
zmin = min(z)
for count,_ in enumerate(z):
z[count] -= zmin
return ScannedObject(list(zip(x,y,z)))
def get_x(self)->list:
"""
Get the x coordinates of the object.
return: x coordinates
"""
return self.x
def get_y(self)->list:
"""
Get the y coordinates of the object.
return: y coordinates
"""
return self.y
def get_z(self)->list:
"""
Get the z coordinates of the object.
return: z coordinates
"""
return self.z
def get_vertices(self, sort:bool = False)->list:
"""
Get the vertices of the object.
:param sort: Sort the vertices by z coordinate
:return: vertices
"""
vertices = self.vertices if not sort else sorted(self.vertices, key=lambda vertex: vertex[2])
return vertices
def get_discrete_vertices(self, step:float = 1)->list:
"""
Discretize the vertices using the method specified in the settings.
:param step: Step of the discretization
:return: Discretized vertices
"""
if SettingManager.get_instance().get_setting("discretisation_method") == "Z0-Zi < DeltaZ":
return self.get_discrete_vertices_1(step)
return self.get_discrete_vertices_2(step)
def get_discrete_vertices_1(self, step:float = 1)->list:
"""
Discretize the vertices of the object using a split method.
This implementation will split the object at every step interval.
:param step: Step of the discretization
:return: Discretized vertices
"""
# if it has already been calculated with the same method and parametters
# dont do it again
if self.old_delta == step and self.old_discrete_type == 0:
return self.old_discrete
self.old_delta = step
self.old_discrete_type = 0
current_interval = int(min(self.get_z()))
splitted_data = [[]]
for line in self.get_vertices(sort=True):
# TODO check distance instead of equality
if line[2] >= current_interval + step:
splitted_data.append([])
current_interval += step
splitted_data[-1].append(line)
self.old_discrete = splitted_data
return splitted_data
def get_discrete_vertices_2(self, step:float = 1)->list:
"""
Discretize the vertices of the object using a length method.
This implementation will split the object when difference between the
first and last point of a slice is greater or equal then the step interval.
:param step: Step of the discretization
:return: Discretized vertices
"""
# if it has already been calculated with the same method and parametters
# dont do it again
if self.old_delta == step and self.old_discrete_type == 1:
return self.old_discrete
self.old_delta = step
self.old_discrete_type = 1
splitted_data = [[]]
z = min(self.get_z())
sorted_vertices = self.get_vertices(sort=True)
for index,_ in enumerate(sorted_vertices):
splitted_data[-1].append(sorted_vertices[index])
if sorted_vertices[index][2] - z > step:
z = sorted_vertices[index+1][2]
splitted_data.append([])
self.old_discrete = splitted_data
return splitted_data
def get_faces(self,resolved:bool = False)->list:
"""
Get the faces of the object.
If the faces are not resolved, the faces will be returned as a list of
indices of the vertices. else, the faces will be returned as a list of
vertices.
:param resolved: If the faces should be resolved
:return: faces
"""
if self.faces is None:
raise FacesNotGiven('No faces were given')
if resolved:
return self.vertices[self.faces]
return self.faces
def update_from_faces(self,faces:list):
"""
Update the object from the faces. This will reconstruct the vertices
from the faces, it is assumed that the faces are given as a list of
vertices.
:param faces: Faces to update the object from
"""
cpt = 0
vertex_dict = {}
new_vertices = []
new_faces = []
for face in faces:
new_faces.append([])
for vertex in face:
vertex = tuple(vertex)
if vertex not in vertex_dict:
vertex_dict[vertex] = cpt
cpt += 1
new_vertices.append(vertex)
new_faces[-1].append(vertex_dict[vertex])
self.vertices = np.asarray(new_vertices)
self.faces = np.asarray(new_faces)
self.x = self.vertices[:,0]
self.y = self.vertices[:,1]
self.z = self.vertices[:,2]
self.normalise()
def normalise(self, axis:str = 'z'):
"""
Normalise the object.
:param axis: Axis to normalise
"""
if 'x' in axis:
self.x -= min(self.x)
if 'y' in axis:
self.y -= min(self.y)
if 'z' in axis:
self.z -= min(self.z)
self.vertices = np.asarray(list(zip(self.x,self.y,self.z)))
def get_data(self)->dict:
"""
Get the data of the object.
:return: Data of the object
"""
return {'verticies': self.vertices,
'faces': self.faces,
'x': self.x,
'y': self.y,
'z': self.z
}
def export_xyz(self, file_path:str,separator:str="\t"):
"""
Export the object in a file.
:param file_path: Path of the file
:param separator: chars used to separate the values
"""
string = ''
for vertex in self.get_vertices(sort=True):
x = round(vertex[0], 6)
y = round(vertex[1], 6)
z = round(vertex[2], 6)
string+=f"{x}{separator}{y}{separator}{z}\n"
save_output_file(file_path,string)
def export_obj(self,file_path):
"""
Export the object in a file.
:param file_path: Path of the file
"""
string = ''
for vertex in self.get_vertices():
x = round(vertex[0], 6)
y = round(vertex[1], 6)
z = round(vertex[2], 6)
string+=f"v {x} {y} {z}\n"
for face in self.get_faces():
string+="f "
for vertex in face:
string+=f"{vertex+1} "
string+="\n"
save_output_file(file_path,string)
def parse_result_file(file_path: str, separator: str = "\t")-> tuple:
"""
This functions parses the discretised output file to retreive the first
three colunms. It is used to extract the means of x y z for the consistency
check.
:param file_path: Path of the file
:param separator: chars used to separate the values
:return: x, y, z
:Example:
>>> parse_result_file("test.txt")
([1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [1.0, 2.0, 3.0])
"""
lines = []
x, y, z = [], [], []
with open(file_path, "r") as f:
lines = f.readlines()[1:]
for line in lines:
line = line.replace(",", ".")
values = line.split(separator)
x.append(float(values[0]))
y.append(float(values[1]))
z.append(float(values[2]))
return x, y, z