AnalyseMorphologique/utils/math/data_extraction.py
Djalim Simaila fb2bb6e9ce 🐛 fix(data_test.py): change variable name from teta_diffs to theta_diffs to improve semantics
 feat(data_processing.py): add function to calculate morphological indicators from discrete data
The variable name teta_diffs was changed to theta_diffs to improve semantics. A new function was added to calculate morphological indicators from discrete data. The function calculates Tortuosity, Volume, Surface, Mean radius, Standard deviation of radius, Sigma r tot, MI_l, and MI_p.

🔥 refactor(input.py): remove unused result_file_path parameter from ScannedObject constructor and from_xyz_file method
 feat(input.py): add encoding parameter to open method in from_obj_file and from_xyz_file methods
The result_file_path parameter was not being used in the ScannedObject constructor and from_xyz_file method, so it was removed to simplify the code. The encoding parameter was added to the open method in the from_obj_file and from_xyz_file methods to ensure that the files are opened with the correct encoding.

🐛 fix(output.py): add utf-8 encoding when writing to output file
 feat(output.py): remove unused import and function argument, improve code readability
The fix adds the utf-8 encoding when writing to the output file to avoid encoding issues. The feat removes the unused import and function argument to improve code readability. The function format_data now only takes the necessary arguments and the unused import is removed.

🐛 fix(main_window.py): fix typo in function name
 feat(main_window.py): add persistence to pre-processed data
The fix corrects a typo in the function name get_true_theta_from_x_y. The feat adds persistence to the pre-processed data by storing the raw data, discrete data, and advanced data in the main window. This avoids re-computation of the data when switching between tabs.

🎨 style(MainWindow.ui): add export_advanced_metrics button to the UI
🎨 style(UI_MainWindow.py): add export_advanced_metrics button to the UI
🎨 style(ressources_rc.py): update the resource file
🐛 fix(data_extraction.py): fix typo in function name get_mean_teta to get_mean_theta
The changes add a new button to the UI named "export_advanced_metrics" which allows the user to export variables. The resource file is updated to reflect the changes. The typo in the function name get_mean_teta is fixed to get_mean_theta.
2023-05-09 10:56:43 +02:00

188 lines
5.1 KiB
Python

"""
Created on Mon Apr 17 2023
@name: data_extraction.py
@desc: This module contains some utility functions for math operations.
@auth: Djalim Simaila
@e-mail: djalim.simaila@inrae.fr
"""
import numpy as np
import math
def get_mean(values:list):
"""
Get the mean of the values.
:param values: values
:return: mean of the values
:Example:
>>> get_mean([1,2,3,4,5])
3.0
"""
return np.mean(values)
def get_standard_deviation(values:list):
"""
Get the standard deviation of the values.
:param values: values
:return: standard deviation of the values
:Example:
>>> get_standard_deviation([1,2,3,4,5])
1.4142135623730951
"""
return np.std(values)
def get_x_y_z_mean(discrete_values:list):
"""
Get the mean of the x and y coordinates in the discrete range.
:param x: x coordinates
:param y: y coordinates
:return: mean of x and y coordinates in the discrete range
:Example:
>>> get_x_y_z_mean([(1,2,3),(4,5,6),(7,8,9)])
(4.0, 5.0, 6.0)
"""
x = [vertex[0] for vertex in discrete_values]
y = [vertex[1] for vertex in discrete_values]
z = [vertex[2] for vertex in discrete_values]
return get_mean(x), get_mean(y), get_mean(z)
def get_radius_from_x_y(xi:float, yi:float, x_mean:float, y_mean:float):
"""
Get the radius from the x and y coordinates.
:param xi: x coordinate
:param yi: y coordinate
:param x_mean: mean of x coordinates in the discrete range
:param y_mean: mean of y coordinates in the discrete range
:return: radius for this point
:Example:
>>> get_radius_from_x_y(1,2,3,4)
2.8284271247461903
"""
return np.sqrt(np.power((xi - x_mean), 2) + np.power((yi - y_mean), 2))
def get_mean_radius(discrete_values:list):
"""
Get the mean of the radius in the discrete range.
:param discrete_values: discrete values
:return: mean of the radius in the discrete range
:Example:
>>> get_mean_radius([(1,2,3),(4,5,6),(7,8,9)])
2.82842712474619
"""
x_mean, y_mean, z_mean = get_x_y_z_mean(discrete_values)
radius = []
for x,y,z in discrete_values:
radius.append(get_radius_from_x_y(x,y,x_mean,y_mean))
return get_mean(radius)
def get_radius_std(discrete_values:list):
"""
Get the standard deviation of the radius in the discrete range.
:param discrete_values: discrete values
:return: standard deviation of the radius in the discrete range
:Example:
>>> get_radius_std([(1,2,3),(4,5,6),(7,8,9)])
2.8284271247461903
"""
x_mean, y_mean, z_mean = get_x_y_z_mean(discrete_values)
radius = []
for x,y,z in discrete_values:
radius.append(get_radius_from_x_y(x,y,x_mean,y_mean))
return get_standard_deviation(radius)
def get_mean_theta(discrete_values:list):
"""
Get the mean of the theta in the discrete range.
:param discrete_values: discrete values
:return: mean of the theta in the discrete range
:Example:
>>> get_mean_theta([(1,2,3),(4,5,6),(7,8,9)])
0.7853981633974483
"""
x_mean, y_mean, z_mean = get_x_y_z_mean(discrete_values)
theta = []
for x,y,z in discrete_values:
theta.append(get_theta_from_x_y(x,y,x_mean,y_mean))
return get_mean(theta)
def get_theta_from_x_y(xi:float, yi:float, x_mean:float, y_mean:float):
"""
Get the theta from the x and y coordinates.
:param xi: x coordinate
:param yi: y coordinate
:param x_mean: mean of x coordinates in the discrete range
:param y_mean: mean of y coordinates in the discrete range
:return: theta for this point
:Example:
>>> get_theta_from_x_y(1,2,3,4)
0.7853981633974483
"""
return math.atan((yi - y_mean)/(xi-x_mean))
def get_true_theta_from_x_y(xi:float, yi:float, x_mean:float, y_mean:float):
"""
Get the theta from the x and y coordinates.
:param xi: x coordinate
:param yi: y coordinate
:param x_mean: mean of x coordinates in the discrete range
:param y_mean: mean of y coordinates in the discrete range
:return: theta for this point
:Example:
>>> get_true_theta_from_x_y(1,2,3,4)
0.7853981633974483
"""
return math.atan2((xi-x_mean),(yi-y_mean))
def get_difference_from_mean_value(values:list, mean_value:float):
"""
Get the difference from the mean value.
:param values: values
:param mean_value: mean value
:return: difference from the mean value
:Example:
>>> get_difference_from_mean_value([1,2,3,4,5], 3)
[-2.0, -1.0, 0.0, 1.0, 2.0]
"""
return [value - mean_value for value in values]
def get_distance_between_two_vertices(vertex_1,vertex_2):
"""
Get the distance between two vertices.
:param vertex_1: vertex 1
:param vertex_2: vertex 2
:return: distance between two vertices
:Example:
>>> get_distance_between_two_vertices((1,2,3),(4,5,6))
5.196152422706632
"""
return np.sqrt(np.power((vertex_1[0] - vertex_2[0]), 2) + np.power((vertex_1[1] - vertex_2[1]), 2) + np.power((vertex_1[2] - vertex_2[2]), 2))
#todo fix examples
if __name__ == "__main__":
import doctest
doctest.testmod()