""" Created on Fri Apr 21 2023 @name: position_manipulation.py @desc: This module contains some utility functions for position manipulation. @auth: Djalim Simaila @e-mail: djalim.simaila@inrae.fr """ import numpy as np from utils.files.input import ScannedObject from utils.math.data_extraction import get_mean def get_mass_properties(obj:ScannedObject)->tuple: ''' Evaluate and return a tuple with the following elements: - the volume - the position of the center of gravity (COG) - the inertia matrix expressed at the COG :param obj: Object to analyse :return: tuple(float, numpy.array, numpy.array) From numpy-stl:(https://pypi.org/project/numpy-stl/) Documentation can be found here: http://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf ''' verts = np.asarray(obj.get_vertices()) faces = np.asarray(obj.get_faces()) faces = verts[faces] x = np.asarray([[point[0] for point in faces] for faces in faces]) y = np.asarray([[point[1] for point in faces] for faces in faces]) z = np.asarray([[point[2] for point in faces] for faces in faces]) def subexpression(x): w0, w1, w2 = x[:, 0], x[:, 1], x[:, 2] temp0 = w0 + w1 f1 = temp0 + w2 temp1 = w0 * w0 temp2 = temp1 + w1 * temp0 f2 = temp2 + w2 * f1 f3 = w0 * temp1 + w1 * temp2 + w2 * f2 g0 = f2 + w0 * (f1 + w0) g1 = f2 + w1 * (f1 + w1) g2 = f2 + w2 * (f1 + w2) return f1, f2, f3, g0, g1, g2 x0, x1, x2 = x[:, 0], x[:, 1], x[:, 2] y0, y1, y2 = y[:, 0], y[:, 1], y[:, 2] z0, z1, z2 = z[:, 0], z[:, 1], z[:, 2] a1, b1, c1 = x1 - x0, y1 - y0, z1 - z0 a2, b2, c2 = x2 - x0, y2 - y0, z2 - z0 d0, d1, d2 = b1 * c2 - b2 * c1, a2 * c1 - a1 * c2, a1 * b2 - a2 * b1 f1x, f2x, f3x, g0x, g1x, g2x = subexpression(x) f1y, f2y, f3y, g0y, g1y, g2y = subexpression(y) f1z, f2z, f3z, g0z, g1z, g2z = subexpression(z) intg = np.zeros((10)) intg[0] = sum(d0 * f1x) intg[1:4] = sum(d0 * f2x), sum(d1 * f2y), sum(d2 * f2z) intg[4:7] = sum(d0 * f3x), sum(d1 * f3y), sum(d2 * f3z) intg[7] = sum(d0 * (y0 * g0x + y1 * g1x + y2 * g2x)) intg[8] = sum(d1 * (z0 * g0y + z1 * g1y + z2 * g2y)) intg[9] = sum(d2 * (x0 * g0z + x1 * g1z + x2 * g2z)) intg /= np.array([6, 24, 24, 24, 60, 60, 60, 120, 120, 120]) volume = intg[0] cog = intg[1:4] / volume cogsq = cog ** 2 inertia = np.zeros((3, 3)) inertia[0, 0] = intg[5] + intg[6] - volume * (cogsq[1] + cogsq[2]) inertia[1, 1] = intg[4] + intg[6] - volume * (cogsq[2] + cogsq[0]) inertia[2, 2] = intg[4] + intg[5] - volume * (cogsq[0] + cogsq[1]) inertia[0, 1] = inertia[1, 0] = -(intg[7] - volume * cog[0] * cog[1]) inertia[1, 2] = inertia[2, 1] = -(intg[8] - volume * cog[1] * cog[2]) inertia[0, 2] = inertia[2, 0] = -(intg[9] - volume * cog[2] * cog[0]) return volume, cog, inertia def verticalise(obj:ScannedObject): """ Rotate the object so that the principal axis of inertia is vertical :param obj: Object to analyse """ cog = get_mass_properties(obj) cog, inertia = get_mass_properties(obj)[1:] [val,vect] = np.linalg.eig(inertia) if np.linalg.det(vect) < 0: vect[:,2] = - vect[:,2] rot = vect.T faces = obj.get_faces(True) theta = -np.pi/2 R_y = np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [-np.sin(theta), 0, np.cos(theta)]]) for face,_ in enumerate(faces): for vertex in range(3): faces[face][vertex] = rot@(faces[face][vertex] - cog) faces[face][vertex] = R_y@(faces[face][vertex]) obj.update_from_faces(faces)